The Bio-Engineering Approach for Plant Investigations and Growing Robots

It has been 10 years since the publication of the first article looking at plants as a biomechatronic system and as model for robotics. Now, roboticists have started to look at plants differently and consider them as a model in the field of bioinspired robotics. Despite plants have been seen traditionally as passive entities, in reality they are able to grow, move, sense, and communicate. These features make plants an exceptional example of morphological computation – with probably the highest level of adaptability among all living beings. They are a unique model to design robots that can act in- and adapt to- unstructured, extreme, and dynamically changing environments exposed to sudden or long-term events. Although plant-inspired robotics is still a relatively new field, it has triggered the concept of growing robotics: an emerging area in which systems are designed to create their own body, adapt their morphology, and explore different environments. There is a reciprocal interest between biology and robotics: plants represent an excellent source of inspiration for achieving new robotic abilities, and engineering tools can be used to reveal new biological information. This way, a bidirectional biology-robotics strategy provides mutual benefits for both disciplines. This mini-review offers a brief overview of the fundamental aspects related to a bioengineering approach in plant-inspired robotics. It analyses the works in which both biological and engineering aspects have been investigated, and highlights the key elements of plants that have been milestones in the pioneering field of growing robots.

1. Introduction

How we see plants has changed significantly, as has the importance of protecting them for the benefit of the entire terrestrial ecosystem (Baluška and Mancuso, 2020). From an ecological role and evolutionary path, plants are producers in the food net of an ecosystem. They are photoautotroph organisms, so able to self-produce organic compounds by using mineral substances through photosynthesis. By exploiting substances directly from air and soil, they “do not need traditional locomotion,” but they evolved a number of singular strategies to interact with the environment, including complex movements, sensing, growing and propagation. New technologies, such as time-lapse recording, have demonstrated such abilities both above and below ground (Vincent et al., 2011Silverberg et al., 2012Vlad et al., 2014Poppinga et al., 2015Guerra et al., 2019Rambaud-Lavigne and Hay, 2020). Also robotics has contributed to this change in perspective by starting to mimic plants at both components and system level (Mazzolai et al., 20102011Sadeghi et al., 20142020Hawkes et al., 2017Nahar et al., 2017Wooten and Walker, 2018Must et al., 2019Bolt et al., 2020Geer et al., 2020).

This mini-review focuses on the vision of “science for robotics and robotics for science,” to highlight the results of a bioengineering approach in simultaneously driving innovative technological design and obtaining new biological insights.

2. From Plants to Robots

Plants are sessile organisms, and this means that they spend their entire lives at the site of seed germination. They have thus evolved a high level of plasticity enabling them to thrive, adapt and respond to changing conditions and survive under stress (Karban, 2008). Due to their exceptional adaptability, plants are the first living beings to colonize hostile environments, and have the unique capability to live contemporary in two different environments (e.g., soil and air, or water and air; Niklas and Spatz, 2012). These behaviors are linked to a complex and dynamic interaction between their morphology, distributed sensory-motor control, and the environment, which in turn represent the basic principles of what is called “morphological computation”(Laschi and Mazzolai, 2016): a modern perspective on intelligence in which the physical body has a primary role (Paul, 2006Pfeifer and Bongard, 2007) and the behavior depends strongly on the mechanical properties, the form/morphology, and the arrangement of the perceptual, motor and “processing units” (Zambrano et al., 2014).

Plants are thus the perfect candidates to be a model to deal with a key challenge in robotics: the capacity to function in unstructured environments. This skill requires heightened abilities of perception, efficient use of energy resources, and high adaptability to dynamic environments and changing situations. Plants offer several ideas for designing innovative technologies, such as: (1) indeterminate growing capabilities; (2) movements without muscles; (3) structural materials with morphological adaptability and variable stiffness; (4) distributed intelligence and sensory systems; (5) anchoring/attachment strategies; (6) intra-system and inter-system communication; and (7) energy-saving mechanisms. Belowground, plants represent the best example among living beings for efficient soil non-destructive and capillary exploration. They have a network of growing and branching roots, whose tips are highly sensorized and efficiently move the soil volume and search for nutrients. Aboveground, plants are a unique model for the design of low-mass low-volume robots capable of anchoring themselves, negotiating voids, and climb where current climbing robots based on wheels, legs, or rails would get stuck or fall.

3. Movements in Plants Without Muscles

From the growing of shoots and roots, to the opening and closing of stomata at the leaf surface, to the rapid snapping of carnivorous plants and the explosive launch of seed pods, plants have evolved a remarkable range of mechanisms to generate motions without the need for a muscular structure (Darwin, 1880Gilroy and Masson, 2008Forterre, 2013Jung et al., 2014Geitmann, 2016Echevin et al., 2019Morris and Blyth, 2019).

3.1. Water Transport

Plants turn out in a perfect hydraulic engine. At the macro level, plants exploit a sophisticated strategy, relying on water potential gradient, for moving water from the soil (i.e., at soil level ≈ −0.3 MPa) to the leaves (i.e., at the leaf level ≈ −7.0 MPa; McElrone et al., 2013). At the cell level, plants draw the water in and out of their cells using the osmotic gradient across semipermeable membranes. The turgor pressure thus changes creating a local change in the cellular volume and tissue stiffness, and by exploiting the thin and stiff cell-wall features, enables the large-scale tissue deformations required for motion (Dumais and Forterre, 2012). The characteristics of the water flow induced by gradients of water potential, the level of turgor pressure, and the mechanical properties of cell-wall deformation, are the key elements of water-driven movements in plants.

In roots, the movement of primary growth is characterized by the expansion of the cells facilitated by water uptake generating turgor pressure to inflate the cell and stretch the walls (Taiz and Zeiger, 2002). Plants are thus able to penetrate and explore soil in a non-destructive way. Such mechanism was first investigated from a robotics point of view in Mazzolai et al. (2011), with an osmotic actuation module implementing electro-osmosis by three cells separated by pairs of semipermeable osmotic membranes and ion-selective membranes, individually coupled with a piston mechanism. To aid the robotic design, Sinibaldi et al. (2013) followed a bioengineering approach to model the dynamics of osmotic actuation and represent a formal expression of scaling laws for the physical parameters necessary for the actuation strategy: characteristic time, maximum force, peak power, power density, cumulative work and energy density, role of volume-surface aspect ratio. This model was then exploited to design a forward osmosis-based actuator (Sinibaldi et al., 2014), fabricated on the basis of an analysis of plant movements, plant cell characteristics, and osmotic actuation modeling. The system has a typical size of 10 mm, produces forces above 20 N, with a power consumption in the order of 1 mW, and a characteristic time of 2–5 min.

3.2. Elastic Energy

To obtain faster movements, plants exploit instability and fluid-solid coupling together with hydraulic mechanisms: elastic energy is first stored in the cell walls by means of a water flow, and released suddenly when a critical threshold of energy barrier is surpassed (Forterre et al., 2005Dumais and Forterre, 2012). The rapid movement of leaf closure in the carnivorous plant Dionaea muscipula (Venus flytrap) derives from the accumulation of elastic energy in the leaves, driven by swelling and shrinkage coupled with a double curvature geometry of lobes. This allows a snap-buckling mechanism of 100 ms after the initial trigger stimulus. These features inspired a flytrap-like robot described in Kim et al. (2014) which can reach rapid speed motion (~100 ms) and large deformations (18 m−1). The system consists of an asymmetrically laminated carbon fiber prepreg (CFRP), which acts as a bistable artificial leaf, and a shape memory alloy (SMA), which acts as triggering actuator to induce the snap motion. Differently, Esser et al. (2019) combined different actuation systems (pneumatic, plus SMA spring) to translate the principles of movements of Venus flytrap and waterwheel plant in systems able to response to different environmental triggers (heat, moisture or magnetic stimuli). More recently, polarized light microscopy revealed the presence of microfibrils reinforcing the leaf, running perpendicular to its midrib in the upper and lower epidermis. This additional feature, integrated with bistability, inspired the design of an artificial hygroscopic bistable system, obtained by bonding prestretched poly(dimethylsiloxane) – PDMS layers prior to depositing electrospun polyethylene oxide (PEO) nanofibers (Lunni et al., 2020). The Venus flytrap is an interesting model for robotic components and artificial materials, which have been recently deeply reviewed by Esser et al. (2020).

4. Below-Ground Mobility: Strategies and Morphological Features of Roots for Soil Exploration

4.1. Moving-By-Growing

The movement of roots inside the soil occurs by adding new cells to the apex. This strategy allows minimizing the resistance forces during penetration, and is helped by lateral hairs and diameter expansions that keep the whole system anchored. The roots’ strategy of growing from the tip is a key specification for the development of robotic systems for soil exploration. To quantify the influence of this mechanism during penetration, Tonazzini et al. (2013) used a physical robotic demonstrator and showed that the growth from the tip reduces penetration energy from 20 to up 50%, depending on the initial depth. Following these quantitative analyses, Sadeghi et al. (2014) designed the first root-like system implementing a growing mechanism by means of a monotonic process that continuously adds new material to the base of the tip, in the form of a layer, and pushes forward the tip itself layer-by-layer.

This concept triggered the idea of moving-by-growing, paving the way for growing robots: by integrating a miniaturized 3D printer into the tip of a root-like device and using a thermoplastic filament, the body of the root-like system can be created layer-by-layer thus replicating the natural mechanism of cell deposition and consolidation that occurs in plants growth (Sadeghi et al., 2017). The concept of growing system has been approached also using other technologies. For example, the robot described in Hawkes et al. (2017) grows via pressurization of an inverted thin-walled vessel.

4.2. Circumnutations

To further enhance exploration abilities, circular movements (known as “circumnutations”) are performed by the root tip due to a combination of internal factors and external factors (i.e., gravitropism, Brown, 1993Stolarz, 2009Migliaccio et al., 2013). Circumnutations are a class of movements that are found in all plants organs, but in particular in those that are involved in growth (roots, shoots, branches, flower stalks) and generate elliptical or circular trajectories (Mugnai et al., 2015).

To quantify the characteristics of root circumnutations in soil for robotic design purposes, Popova et al. (2012)Del Dottore et al. (2018b), and Tedone et al. (2020) have proposed a methodology for the analysis of the movement, including a time-lapse videos observation (in air and in soil) and the study of tip kinematics using the “Analyser for Root Tip Tracks” (ARTT, Russino et al., 2013), which combines a segmentation algorithm with additional software imaging filters in order to realize a 2D tip detection. Measurements of the growing speed and circumnutation amplitude were extracted to implement the circumnutation behavior in a soft robotic root that bends using soft spring-based actuators (Sadeghi et al., 2016). Experiments in the air with the robotic root were performed to demonstrate that the system can follow an external stimulus while performing a circumnutation movement, similarly to a natural root. Additional experiments have been performed in a soil-like testbed showing that the use of plant root-like circumnutations improves the efficiency of penetration (33%) compared to moving directly forwards with no circular movement. In line with these results, additional investigations using “robophysical” modeling have revealed the benefits of tip nutation movements for navigating obstacles and exploring heterogenous terrains (McCaskey et al., 2019Taylor et al., 2020).

4.3. Roots Morphology

To better understand the role of morphology of roots in soil, high-resolution imaging methods, such as micro-CT (Kaestner et al., 2006Tracy et al., 2010) can be used to investigate natural roots and thus obtain a 3D reconstruction for bioinspired design insights. Mishra et al. (2018) used imaging capture of Zea mays roots via an optical microscope. The aim was to extract the morphological features of the tip profile and implement a 3D CAD model to guide the design and fabrication of 3D printed root-like probes. These devices, with different diameters and shapes, were compared in terms of energy consumption and penetration force via experimental tests in real soil and discrete element simulations, demonstrating the higher penetration performance of the bioinspired tip profile with respect to the other ones.

5. Above-Ground Movements: Remarkable Abilities in Climbing Plants

Climbing plants show interesting abilities to grow search for a support, and then attach, anchor or coil themselves onto it. They use several types of movements, including circumnutations, and exploit their tactile perception, adhesive properties, and ability to change their mechanical and morphological properties (Rowe and Speck, 20052015). From a biomimetic perspective, recent reviews have focused on the attachment mechanisms (Burris et al., 2018) or those features that ensure highly flexible, soft and continuum robotic appendages (Fiorello et al., 2020). Tendrils and vines are particularly interesting in this framework, and specifically for the development of “searcher-like” robots (Wooten and Walker, 20162018Visentin et al., 2020).

5.1. Searching

Early stem growth, where young shoots extend into spaces and search for support, are known as “searchers.” An outstanding example of a light-mass searcher can be found in the climbing catus Selenicereus setaceus (Soffiatti and Rowe, 2020). Searchers often have a light but stiff structure, and are capable to extend across voids and perform circumnutations to improve the probability of touching a support (Gallenmüller et al., 2004). Circumnutations offer a valuable solution for adaptation algorithms in motion planning (Wooten and Walker, 20162018). By analyzing the behavior of vines, circumnutation-based algorithm improves the performance of a tendril-like continuum robots, enabling efficient environmental contact and helping to guide and stabilize the system. Such strategy could be used, for example, in space for positioning sensors or exploring the surrounding environment (Mehling et al., 2006Tonapi et al., 2014Wooten and Walker, 2015Nahar et al., 2017).

5.2. Coiling

In climbing plants, contact coiling starts when a local mechanical stimulus occurs in a tendril, which then start to curl around the support and grip to it. This coiling is associated with the presence of gelatinous fibers (“G fibers,” Bowling and Vaughn, 2009). A differential decrease in the water content of a G fibers-bilayer ribbon generates an asymmetric contractile force, which drives the coiling (Gerbode et al., 2012). Then, a secondary coiling (“free-coiling”) pulls the plant closer to the support, creating an elastic spring-like anchorage resistant to external loads or wind. The loss of water during the free-coiling phase leads to an increase in structural rigidity, or lignification, which prevents it from uncoiling. Contact and secondary coiling were investigated from a kinematic viewpoint in Vidoni et al. (2015) to design and develop a tendril-like system able to grasp-by-coiling.

In some cases, the natural mechanism of coiling is reversible, so if the support is not suitable, the tendril uncoils. This feature was implemented in a small-scale system by Must et al. (2019). The actuation strategy derives from a plant’s capacity to actively control osmolyte gradients, and is based on the electrosorption of ions on flexible electrodes (in porous carbon), driven at low input voltages (1.3 V). A 1 cm electroactive unit reversibly controls the concentration of ions (acting as osmolyte) obtained through the dissolution of an electrolyte. This tendril-like soft robot, coupled to the control unit, performs coiling and uncoiling with reversible stiffening and actuation.

6. Energy Harvesting From Plant Leaves

In addition to their photosynthetic apparatus, leaves can also work as an integrated triboelectric generator and convert mechanical stimuli into electrical signals (Jie et al., 2018Meder et al., 2018). Meder et al. (2018) used Kelvin force microscopy to investigate how the charge is generated at the leaving plant leaf and reported that the electric signal due to cuticle triboelectrification can be generated by natural mechanical stimuli, such as wind or contact with other leaves. This discovery inspired the first living plant-hybrid system that can convert wind energy into electricity. Tested under outdoor conditions in a controlled environment, these plant-hybrid generators convert wind from multiple directions to directly power light-emitting diodes or a digital thermometer (Meder et al., 2020).

7. Morphological Computation: Plant Seeds

Seeds are one of the most significant examples of morphological computation in the natural world. They provide a rich library of morphological and mechanical features optimized for passive take-off, flying, landing, and drilling (Fratzl and Barth, 2009). Although seeds lack active metabolism, hence no internal energy is produced, they are highly responsive to environmental conditions (e.g., temperature and humidity) and have anisotropic and reversible movements.

Environmental responsiveness is due to materials (Chambers and MacMahon, 1994Burgert and Fratzl, 2009Sadlo et al., 2018) and structural features (Abraham and Elbaum, 2013) of the seed tissues. As example, autorotating seeds of maples generate a surprisingly high lift by creating a stable leading-edge vortex as they descend (Lentink et al., 2009). Taking into account their geometries and flight trajectories, such capabilities can be used for the design of auto-rotative robotic samara air vehicles (Ulrich et al., 2010).

New fabrication technologies, like 4D printing, are allowing to advance multi-functional materials capabilities, such as in the case of biomimetic hygro-responsive composite polymer inspired by the reversible shape-changes of Bhutan pine (Pinus wallichiana) cone seed scales (Correa et al., 2020).

8. Conclusions

Plants as a model has been officially accepted within the robotics community, inspiring also new sensors (Sareh et al., 2014Lucarotti et al., 2015Su et al., 2015Blandin et al., 2017Cheng et al., 2018) and swarm communication strategies (Ciszak et al., 2012Del Dottore et al., 2018a).

Besides, plant-inspired robots (Sadeghi et al., 2014), robophysical models (McCaskey et al., 2019), and behavior models (Agostinelli et al., 2020), have been crucial to validate hypothesis on plants’ mechanisms, closing the circle of bio-robotics.

There is a new vision for bioinspired robots, in which robots are seen as environmentally responsible machines that can grow, adapt, and are built with recyclable, or biodegradable, or biohybrid materials (Yang et al., 2018Mazzolai and Laschi, 2020).

To achieve this, we need to look at a more global level, investigating the strategies and synergies of natural organisms (Aartsma et al., 2017Paudel Timilsena et al., 2020), and at how they are integrated harmoniously within the natural ecosystem. All these aspects need to be further studied with a multi-disciplinary approach to develop a new wave of environmentally-responsible robots.

Plants are not only a source of inspiration for current and future technological progress in an environmentally responsible integrated vision. Equally importantly, they are key to our future welfare. In order for us to better understand and protect the biodiversity of species and the whole global environment, it is imperative that we learn more about their features, as well as how they deal with the natural ecosystem.

Author Contributions

BM and LM conceived the focus and the format of the mini-review. BM, LM, FT, and IF curated the existing bibliography, contributed to the table contents, and to the writing of the manuscript. All authors contributed to the article and approved the submitted version.

“frontiersin.org”

Cannabis terapeutica: a San Marino apre la prima impresa, in arrivo circa 200 piantine per avviare la coltivazione

Si attende l’arrivo delle piante madri che attualmente si trovano in fase vegetativa e prive di Thc. Sul Titano sono già state concesse sette licenze.

Dopo l’apertura del Titano alla produzione di cannabis per uso terapeutico, si sta completando la preparazione per avviare le coltivazioni. La prima azienda ha già iniziato l’attività. Dopo aver ottenuto la licenza e acquistato i macchinari necessari, si prevede che presto arriveranno le piante madri, permettendo così di avviare la produzione.

L’intero processo è complesso e viene attentamente monitorato dall’Agenzia sammarinese di controllo sulla cannabis, che opera sotto l’Authority Sanitaria. Sono state rilasciate finora sette licenze, compresa quella dell’azienda già operativa, e altre due imprese attendono l’autorizzazione. La coltivazione deve rispettare regolamenti rigorosi, come spiega il dirigente dell’Authority, Claudio Muccioli: la cannabis viene coltivata esclusivamente in capannoni industriali e in ambienti chiusi. Non vi è alcun legame con la cannabis a uso ricreativo, sottolinea Muccioli.

I farmaci saranno destinati ad aiutare i malati oncologici e verranno utilizzati nella gestione del dolore e nel trattamento di patologie neurologiche, oltre a molti altri impieghi. Come spiega Muccioli, i farmaci che contengono queste sostanze offrono un’elevata efficacia, poiché la combinazione degli ingredienti contenuti consente di ottenere molteplici effetti benefici.

La cannabis terapeutica è già stata utilizzata per anni a San Marino in casi specifici. Tuttavia, ora siamo in una nuova fase di sviluppo e stiamo lavorando per allinearci agli standard richiesti. Al momento, secondo l’Authority, l’Iss non ha ancora definito con precisione l’elenco delle patologie per cui lo Stato garantisce la gratuità dei farmaci a base di cannabis, né l’elenco dei medici autorizzati a prescriverli. Tuttavia, il centro Farmaceutico è già pronto a soddisfare le richieste.

Il cambiamento climatico: le cause e gli effetti

Il cambiamento climatico è un fenomeno complesso con cause e effetti significativi.

Ecco una panoramica:

Cause del Cambiamento Climatico

  1. Emissioni di Gas Serra: Le attività umane, come la combustione di combustibili fossili (carbone, petrolio, gas naturale), la deforestazione e l’agricoltura, rilasciano grandi quantità di gas serra (CO₂, metano, ossido di azoto) nell’atmosfera.
  2. Attività Industriali: Le fabbriche e le centrali elettriche contribuiscono significativamente alle emissioni di gas serra
  3. Deforestazione: La rimozione delle foreste riduce la capacità del pianeta di assorbire il CO₂, aumentando la concentrazione di gas serra nell’atmosfera.
  4. Agricoltura: L’uso di fertilizzanti chimici e la gestione del bestiame rilasciano metano e ossido di azoto, che sono potenti gas serra.

Effetti del Cambiamento Climatico

  1. Riscaldamento Globale: L’aumento delle temperature globali porta a estati più calde e inverni più miti.
  2. Eventi Meteorologici Estremi: Più frequenti e intensi fenomeni meteorologici come uragani, inondazioni, siccità e ondate di calore.
  3. Scioglimento dei Ghiacciai: Il riscaldamento globale causa lo scioglimento dei ghiacciai e dei ghiacciai polari, contribuendo all’aumento del livello del mare.
  4. Impatti sulla Fauna e Flora: Cambiamenti nei modelli di migrazione, riproduzione e habitat per molte specie animali e vegetali.
  5. Impatti sulla Salute Umana: Aumento delle malattie legate al calore, problemi respiratori dovuti all’inquinamento atmosferico e stress psicologico dovuto a disastri naturali.

GMP hydroponic system

Un impianto idroponico GMP (Good Manufacturing Practice) è progettato per garantire che le piante siano coltivate in condizioni ottimali e sicure, rispettando standard rigorosi di qualità e sicurezza. Questi impianti sono particolarmente utilizzati per la coltivazione di piante medicinali o alimentari che richiedono un controllo preciso delle condizioni di crescita.

Caratteristiche di un Impianto Idroponico GMP

  1. Controllo Ambientale: Monitoraggio e regolazione costante di temperatura, umidità, e illuminazione per creare un ambiente di crescita ideale.
  2. Sistemi di Nutrizione: Utilizzo di soluzioni nutritive bilanciate e controllate per garantire che le piante ricevano tutti i nutrienti necessari.
  3. Tracciabilità: Ogni fase del processo di coltivazione è documentata per garantire la tracciabilità e la conformità agli standard GMP.
  4. Sicurezza e Igiene: Misure rigorose per prevenire contaminazioni, inclusi sistemi di filtrazione dell’acqua e protocolli di pulizia e disinfezione.

Esempi di Applicazioni

  • Coltivazione di Erbe Medicinali: Utilizzo di impianti GMP per garantire la purezza e la qualità delle piante utilizzate in prodotti farmaceutici.
  • Produzione Alimentare: Coltivazione di verdure e frutta in ambienti controllati per garantire la sicurezza alimentare e la qualità del prodotto finale.

 

Principali Tecniche di Coltivazione Idroponica

Principali Tecniche di Coltivazione Idroponica

  1. Sistema di Flusso e Riflusso (Ebb & Flow): Le piante sono collocate in cassette riempite con una soluzione di acqua e nutrienti che sommerge solo le radici. La soluzione viene poi drenata e riutilizzata, permettendo un controllo preciso sulla somministrazione di nutrienti.
  2. Tecnica del Film Nutritivo (NFT): Le piante crescono su una sottile pellicola d’acqua e nutrienti che scorre lungo un canale inclinato. Questo metodo è molto efficiente per la coltivazione di verdure a foglia verde.
  3. Coltivazione in Substrato: Utilizzo di materiali come perlite, sabbia o argilla espansa che vengono inumiditi con una soluzione nutritiva. Questo metodo offre un buon supporto fisico alle piante.

Vantaggi dell’Idroponica

  • Risparmio Idrico: Utilizza fino al 90% in meno di acqua rispetto ai metodi tradizionali di coltivazione.
  • Crescita Rapida: Le piante crescono più velocemente grazie all’accesso diretto ai nutrienti.
  • Controllo Ambientale: Permette di coltivare tutto l’anno in ambienti controllati, riducendo l’impatto delle condizioni climatiche avverse.

    I sistemi idroponici si dividono principalmente in due categorie: ATTIVI e PASSIVI.

    • Sistemi attivi: Utilizzano pompe per far circolare la soluzione nutritiva, garantendo che le radici delle piante siano costantemente esposte ai nutrienti e all’ossigeno. Esempi includono sistemi NFT (Nutrient Film Technique) e aeroponici.

    • Sistemi passivi: Si affidano alla capillarità e alla gravità per distribuire i nutrienti alle radici. Un esempio comune è il sistema wick, dove lo stoppino assorbe la soluzione nutritiva e la trasporta alle radici.

     

Le piante coltivate in idroponica necessitano di molta meno di acqua rispetto a quelle coltivate in campo, in particolare nei sistemi a ricircolo, l’acqua in eccesso non viene dispersa ma convogliata in un serbatoio e riutilizzata. Il consumo di acqua è principalmente dovuto all’assorbimento e alla traspirazione da parte della pianta.
L’assenza di terreno non solo rende le sostanze nutritive più accessibili per le piante, ma permette anche di ridurre al minimo l’uso di acqua, rendendola una scelta più sostenibile.
Un facile accesso alle sostanze nutritive consente alle piante di conservare energia, che viene quindi dirottata verso la crescita.

Le piante possono beneficiare molto della coltivazione idroponica, crescendo più velocemente e offrendo rendimenti migliori. La coltivazione idroponica permette un controllo preciso delle condizioni di crescita, come i nutrienti e l’umidità, che sono cruciali per ottenere piante robuste e produttive.

Grazie all’idroponica hai la possibilità di coltivare le tue piante in luoghi in cui la terra è limitata, non esiste o è fortemente contaminata.

Preparazione di un impianto idroponico 

La pulizia e la sterilizzazione sono essenziali per prevenire problemi in un impianto idroponico.

  • Mantenere un ambiente igienico può fare la differenza tra una coltivazione di successo e una infestata da patogeni, prima di usare l’impianto, sterilizzate tutta l’attrezzatura per ridurre al minimo i rischi di contaminazione.
  • Mantenere il pH nel range ideale è cruciale per l’assorbimento ottimale dei nutrienti. Un pH troppo alto o troppo basso può impedire alle piante di assorbire i nutrienti di cui hanno bisogno, causando carenze e problemi di crescita, viene richiesto un pH di 5,5–5,8 in vegetativa, fino ad arrivare a 6-6,2 in fioritura. Utilizzare un misuratore di pH regolarmente aiuta a mantenere questo equilibrio.
  • Monitorare e mantenere la temperatura dell’acqua è cruciale per la salute delle piante. Un buon termometro ad acqua assicura che le condizioni siano sempre ottimali, il range ottimale di coltivazione va da 18° a 21°. I termoriscaldatori possono essere molto utili, specialmente se la tua coltivazione si trova in un ambiente dove le temperature possono scendere, viceversa bisognerà optare per dei Chiller per raffrescarla. 
  • I fertilizzanti per idroponica sono formulati appositamente per soddisfare le esigenze delle piante cresciute senza terreno, contengono tutti i nutrienti essenziali, come azoto, fosforo, potassio, e anche micronutrienti come ferro, zinco e manganese, la scelta del fertilizzante giusto è cruciale per ottenere buoni risultati.
    Un errore comune con i fertilizzanti idroponici è l’uso di una concentrazione troppo alta, che può danneggiare le radici delle piante.
    È importante seguire il dosaggio corretto e monitorare regolarmente i parametri come il pH e la conduttività elettrica (EC) per assicurarsi che le piante ricevano la giusta quantità di nutrienti senza sovraccaricarle, e ricordarsi che non c’è un substrato tampone che fa da filtro, assorbendo i nutrienti molto più rapidamente e direttamente il margine di errore, in caso di sbaglio umano, è molto più alto rispetto ad avere la stessa coltivazione in terra.

Ottimizzare acqua, nutrienti e spazio aumenta la produzione agricola.

Growing Engineering

L’ingegneria di coltivazione, spesso chiamata ingegneria agraria, è un campo multidisciplinare che combina principi di ingegneria con le scienze agrarie per migliorare l’efficienza e la sostenibilità delle pratiche agricole. Questo settore si occupa di vari aspetti, tra cui:

  1. Gestione delle risorse idriche: Sviluppo di sistemi di irrigazione efficienti e sostenibili, modellizzazione dei sistemi di irrigazione e soluzioni per il trattamento delle acque reflue.
  2. Meccanica agraria: Progettazione e ottimizzazione di macchine agricole, riduzione dell’impatto ambientale e miglioramento della sicurezza e delle prestazioni dei trattori e delle altre attrezzature.
  3. Costruzioni rurali: Progettazione di edifici agricoli sostenibili, utilizzo di materiali innovativi e bio-based, e miglioramento dell’efficienza energetica e idrica.
  4. Agricoltura di precisione: Utilizzo di tecnologie avanzate come sensori e sistemi di controllo per monitorare e ottimizzare le pratiche agricole.

Hydrolife

Hydrolife is a product line by Aerolight Srl that focuses on advanced hydroponic technology for agriculture. Here are some key points about Hydrolife:

  1. Innovative Hydroponic Systems: Hydrolife uses cutting-edge hydroponic technology to enable the cultivation of vegetables and other plants without the need for soil. This technology ensures higher quality and more abundant harvests, regardless of weather conditions or pests1.
  2. Fertilizers: The Hydrolife line includes a range of fertilizers developed in collaboration with Noveral fertilizzanti and agronomic biotechnology laboratories. These fertilizers are designed for hydroponic systems but can also be used with traditional substrates. They combine organic and mineral nutrients and are approved for use in organic farming by the Italian Ministry of Agricultural Policies1.
  3. Sustainability: Hydrolife emphasizes sustainable agriculture practices, aiming for zero residue in the final products. This makes their produce suitable for pharmaceutical applications, ensuring safety and high quality1.
  4. Professional Use: The products are designed to increase the productivity of plants, making them ideal for professional growers who need reliable and efficient solutions1.

Aerolight srl

The Big Seminar for Your Right Investment

Oolor sit amet, consectetur adipiscing elit. Lacus tempus et diam venenatis maecenas. Nulla elementum ac sed mauris. Et, ligula nec sit scelerisque amet. Dui pulvinar et neque a ultricies consectetur donec ultricies at. Lectus dui vel dignissim velit erat quis urna. Amet aliquet felis facilisis nisl. Ac massa vitae adipiscing etiam id blandit tristique diam viverra. Cursus arcu ac nunc, fringilla dui mi vel. Sed risus, habitant vitae dapibus duis lorem at volutpat. Turpis pellentesque consectetur scelerisque porttitor. Fringilla odio et sed in orci eu. Sollicitudin eu gravida lacus libero, morbi vitae aliquet.A in porta ultrices lacinia at quam auctor. Tempus phasellus gravida interdum urna id massa consectetur. Ac lectus netus massa, auctor sed. Nibh aliquam odio tellus fringilla duis cum. Ornare tincidunt ante consequat quam imperdiet.

Oolor sit amet, consectetur adipiscing elit. Lacus tempus et diam venenatis maecenas. Nulla elementum ac sed mauris. Et, ligula nec sit scelerisque amet. Dui pulvinar et neque a ultricies consectetur donec ultricies at. Lectus dui vel dignissim velit erat quis urna. Amet aliquet felis facilisis nisl. Ac massa vitae adipiscing etiam id blandit tristique diam viverra. Cursus arcu ac nunc, fringilla dui mi vel. Sed risus, habitant vitae dapibus duis lorem at volutpat. Turpis pellentesque consectetur scelerisque porttitor. Fringilla odio et sed in orci eu. Sollicitudin eu gravida lacus libero, morbi vitae aliquet.A in porta ultrices lacinia at quam auctor. Tempus phasellus gravida interdum urna id massa consectetur. Ac lectus netus massa, auctor sed. Nibh aliquam odio tellus fringilla duis cum. Ornare tincidunt ante consequat quam imperdiet.

The Best Place to Invest Your Money

Oolor sit amet, consectetur adipiscing elit. Lacus tempus et diam venenatis maecenas. Nulla elementum ac sed mauris. Et, ligula nec sit scelerisque amet. Dui pulvinar et neque a ultricies consectetur donec ultricies at. Lectus dui vel dignissim velit erat quis urna. Amet aliquet felis facilisis nisl. Ac massa vitae adipiscing etiam id blandit tristique diam viverra. Cursus arcu ac nunc, fringilla dui mi vel. Sed risus, habitant vitae dapibus duis lorem at volutpat. Turpis pellentesque consectetur scelerisque porttitor. Fringilla odio et sed in orci eu. Sollicitudin eu gravida lacus libero, morbi vitae aliquet.A in porta ultrices lacinia at quam auctor. Tempus phasellus gravida interdum urna id massa consectetur. Ac lectus netus massa, auctor sed. Nibh aliquam odio tellus fringilla duis cum. Ornare tincidunt ante consequat quam imperdiet.

Oolor sit amet, consectetur adipiscing elit. Lacus tempus et diam venenatis maecenas. Nulla elementum ac sed mauris. Et, ligula nec sit scelerisque amet. Dui pulvinar et neque a ultricies consectetur donec ultricies at. Lectus dui vel dignissim velit erat quis urna. Amet aliquet felis facilisis nisl. Ac massa vitae adipiscing etiam id blandit tristique diam viverra. Cursus arcu ac nunc, fringilla dui mi vel. Sed risus, habitant vitae dapibus duis lorem at volutpat. Turpis pellentesque consectetur scelerisque porttitor. Fringilla odio et sed in orci eu. Sollicitudin eu gravida lacus libero, morbi vitae aliquet.A in porta ultrices lacinia at quam auctor. Tempus phasellus gravida interdum urna id massa consectetur. Ac lectus netus massa, auctor sed. Nibh aliquam odio tellus fringilla duis cum. Ornare tincidunt ante consequat quam imperdiet.